Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Xenobiotica ; 53(10-11): 573-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934191

RESUMO

Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.


Assuntos
Citocromo P-450 CYP2E1 , Tupaia , Humanos , Suínos , Animais , Cães , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Tupaia/metabolismo , Clorzoxazona/metabolismo , Tupaiidae/metabolismo , Filogenia , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1864(9): 183954, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523303

RESUMO

Many drugs are metabolized by cytochrome P450 (CYP) in the endoplasmic reticulum (ER) membrane. Recent studies have shown that CYP-substrate drugs reach the CYP active site after entering the lipid hydrophobic part of the ER membrane. To clarify the role of cholesterol (Chol) in the CYP-related drug metabolic process, we investigated the lipid bilayer entry of CYP-substrate drugs using a model membrane system as follows. The model membrane system comprised palmitoyl-oleoyl-phosphatidylethanolamine (POPE) and Chol. Phosphatidylethanolamine is the second major phospholipid component of ER membranes. Chlorzoxazone (CZX) was used as the CYP-substrate drug. Calorimetric measurements showed that the addition of CZX to POPE bilayers decreased the gel-liquid crystal phase transition temperature; X-ray diffraction indicated that CZX distributes into the liquid crystal phase bilayers but not practically the gel phase POPE bilayers. In the presence of Chol, dialysis and X-ray structural analyses showed that Chol inhibited CZX entry into the bilayer with an increase in Chol concentration. The Chol concentration in the ER membrane (5-10 mol%) is much lower than that in the plasma membrane (approximately 30 mol%). This fact may allow CYP-substrate drugs to enter the hydrophobic portion of the ER membrane more easily than other organelle membranes, yielding efficient drug metabolism.


Assuntos
Clorzoxazona , Fosfatidiletanolaminas , Clorzoxazona/metabolismo , Colesterol/química , Sistema Enzimático do Citocromo P-450 , Retículo Endoplasmático/metabolismo , Fosfatidiletanolaminas/química
3.
Xenobiotica ; 52(3): 229-239, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35416115

RESUMO

Despite the importance of mice as a preclinical species in drug testing, their hepatic and extrahepatic drug-metabolising characteristics are poorly understood. Here, we compared the P450-dependent drug oxidation activity in tissue microsomes and distribution patterns of P450 protein/mRNA between humans and mice.The activities of midazolam 1'-/4-hydroxylation in the liver and intestine and chlorzoxazone 6-hydroxylation in the liver were similar in humans and mice. The activities of coumarin 7-hydroxylation, flurbiprofen 4'-hydroxylation, and S-mephenytoin 4'-hydroxylation in the liver were higher in humans than in mice. The activities of 7-ethoxyresorufin O-deethylation in the liver, 7-pentoxyresorufin O-depentylation in the lung/liver/intestine, bufuralol 1'-hydroxylation in the liver/intestine, propafenone 4'-hydroxylation in liver/intestine, and diazepam N-demethylation in the liver/intestine were higher in mice than in humans.CYP1A2/2E1 mRNAs were mainly expressed in the livers of humans and mice. Cyp2b9/2b10 mRNAs were abundant in the mouse lung/liver/intestine, but CYP2B6 was mainly expressed in the human liver. CYP2C/2D/3A mRNAs were expressed in the liver and intestine, with the respective proteins detected in tissue microsomes of both humans and mice.These information on P450-dependent drug-metabolising characteristics in hepatic and extrahepatic tissues is useful to understand the similarities and differences between humans and mice in drug metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Fígado/metabolismo , Mefenitoína/metabolismo , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo
4.
J Immunol ; 208(7): 1545-1553, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277421

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease with chronic inflammatory demyelination of the CNS. Experimental autoimmune encephalomyelitis (EAE) is an important animal model to study MS, with many pathological phenomena similar to MS. Th17 cells are important regulators of EAE and MS pathogenesis. Most cytokines needed for Th cell development are secreted by APCs, such as dendritic cells (DCs). Consequently, MS could be improved by inhibiting cytokine secretion from DCs. In this study, we reported that chlorzoxazone could ameliorate EAE pathogenesis via inhibiting IL-6 production by DCs. The EAE signs in the chlorzoxazone-treated group of mice were relieved, which was mainly manifested as lower clinical scores, a decrease in the number of immune cells, and a reduction of demyelination in the CNS. Moreover, the proportion of Th17 cells in the spleen and CNS decreased significantly. In vitro experiments showed that chlorzoxazone treatment significantly reduced DC-derived IL-6 production. In the DC-T cell coculture experiment, significantly decreased Th17 differentiation was observed after chlorzoxazone treatment. In addition, mass spectrometric analysis was performed to elucidate the mechanism by which chlorzoxazone affected EAE and DC function. We showed that the effect of chlorzoxazone on inhibiting the secretion of IL-6 by DCs may be mediated via the AMP-activated protein kinase pathway. Overall, our study elucidated the key role of chlorzoxazone in regulating EAE pathogenesis and suggested that it might be used as a new drug for MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Clorzoxazona/metabolismo , Clorzoxazona/farmacologia , Células Dendríticas , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Th17
5.
Drug Metab Pharmacokinet ; 35(5): 417-424, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32792327

RESUMO

Hemoglobin-vesicles (Hb-V) are being developed as red blood cell (RBC) substitutes. In this study, we report on quantitative and qualitative alterations of hepatic cytochrome P450 (CYPs) and the pharmacokinetics of CYP-metabolizing drugs, with a focus on four CYP isoforms (CYP1A2, CYP2C11, CYP2E1 and CYP3A2), after Hb-V resuscitation from a massive hemorrhage. The results of proteome analysis and western blot data indicate that resuscitation with both Hb-V and packed RBC (PRBC) resulted in a decrease in the protein levels of CYPs. Along with a decrease in the protein expression of CYPs, pharmacokinetic studies showed that the elimination of CYP-metabolizing drugs was prolonged in the Hb-V and PRBC resuscitation groups. It is also noteworthy that the CYP-metabolizing drugs in the Hb-V resuscitation group was retained for a longer period compared to the PRBC resuscitation group, and this is attributed to the CYP isoforms having a lower metabolic activity in the Hb-V resuscitation group than that for the PRBC resuscitation group. These findings suggest that resuscitation with Hb-V after a massive hemorrhage has a slight but not clinically significant effect on drug metabolism via CYPs in the liver due to decreased protein levels and the metabolic activity with respect to the CYPs.


Assuntos
Cafeína/metabolismo , Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hemoglobinas/metabolismo , Midazolam/metabolismo , Choque Hemorrágico/metabolismo , Tolbutamida/metabolismo , Animais , Cafeína/química , Clorzoxazona/química , Sistema Enzimático do Citocromo P-450/química , Interações Medicamentosas , Hemoglobinas/química , Lipossomos/química , Lipossomos/metabolismo , Masculino , Midazolam/química , Ratos , Ratos Sprague-Dawley , Tolbutamida/química
6.
Sci Rep ; 10(1): 8828, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483226

RESUMO

High-performance liquid chromatography (HPLC) is the most common analytical method practiced in various fields and used for analysis of almost all drug compounds in the pharmaceutical industries. During drug development, an evaluation of potential drug interaction with cytochrome P450 (CYP) is essential. A "cocktail" approach is often used in drug development to evaluate the effect of a drug candidate on multiple CYP enzymes in a single experiment. So far, simultaneous analysis of multiple CYP substrates, which have greatly different structure and physicochemical properties, has required organic solvents and mobile phase gradient methods. However, despite the recent emphasis on environmental protection, analytical methods that use only aqueous solvents without the use of organic solvents for separation have not been studied well. This study sought to develop the simultaneous analysis of multiple CYP substrates by using poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive chromatography with only aqueous solvents and isocratic methods. Good separation of multiple CYP substrates was achieved without using organic solvents and any gradient methods by temperature-responsive chromatography utilizing a P(NIPAAm-co-n-butyl methacrylate (BMA))- and P(NIPAAm-co-N-acryloyl L-tryptophan methyl ester (L-Trp-OMe))-grafted silica column. Overall, PNIPAAm-based temperature-responsive chromatography represents a remarkably simple, versatile, and environmentally friendly bioanalytical method for CYP substrates and their metabolites.


Assuntos
Resinas Acrílicas/química , Cromatografia Líquida/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Química Verde/métodos , Clorzoxazona/metabolismo , Cumarínicos/metabolismo , Desenvolvimento de Medicamentos , Mefenitoína/metabolismo , Estrutura Molecular , Fenacetina/metabolismo , Solventes , Especificidade por Substrato , Temperatura , Testosterona/metabolismo , Tolbutamida/metabolismo , Água
7.
Cell Death Dis ; 11(3): 158, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123161

RESUMO

Nowadays, immune diseases are a large burden in healthcare. Mesenchymal stem cells (MSCs) have prominent ability in immunomodulation and have been applicated on treating many immune-related diseases. However, the clinical outcomes can be disparate and sometimes completely counterproductive beyond explanation of cell heterogeneity. The theory of immunomodulation plasticity in MSCs has then emerged to explain that MSCs can be induced into proinflammatory MSC1 or anti-inflammatory MSC2 responding to different immune environment. It would be safer and more efficient if we could induce MSCs into a certain immune phenotype, in most cases MSC2, prior to medical treatment. In this study, we screened and identified a classical FDA-approved drug, chlorzoxazone (CZ). Unlike traditional method induced by IFN-γ, CZ can induce MSC into MSC2 phenotype and enhance the immunosuppressive capacity without elevation of immunogenicity of MSCs. CZ-treated MSCs can better inhibit T cells activation and proliferation, promote expression of IDO and other immune mediators in vitro, and alleviate inflammatory infiltration and tissue damage in acute kidney injury rat model more effectively. Moreover, we discovered that CZ modulates phosphorylation of transcriptional factor forkhead box O3 (FOXO3) independent of classical AKT or ERK signaling pathways, to promote expression of downstream immune-related genes, therefore contributing to augmentation of MSCs immunosuppressive capacity. Our study established a novel and effective approach to induce MSC2, which is ready for clinical application.


Assuntos
Clorzoxazona/farmacologia , Proteína Forkhead Box O3/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Clorzoxazona/metabolismo , Humanos , Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos Wistar
8.
Sci Rep ; 9(1): 17114, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745201

RESUMO

Dissolution testing plays many important roles throughout the pharmaceutical industry, from the research and development of drug products to the control and evaluation of drug quality. However, it is a challenging task to perform both high-efficient separation and high-temporal detection to achieve accurate dissolution profile of each active ingredient dissolved from a drug tablet. In our study, we report a novel non-manual-operation method for performing the automatic dissolution testing of drug tablets, by combining a program-controlled sequential analysis and high-speed capillary electrophoresis for efficient separation of active ingredients. The feasibility of the method for dissolution testing of real drug tablets as well as the performance of the proposed system has been demonstrated. The accuracy of drug dissolution testing is ensured by the excellent repeatability of the sequential analysis, as well as the similarity of the evaluation of dissolution testing. Our study show that the proposed method is capable to achieve simultaneous dissolution testing of multiple ingredients, and the matrix interferences can be avoided. Therefore it is of potential valuable applications in various fields of pharmaceutical research and drug regulation.


Assuntos
Acetaminofen/metabolismo , Química Farmacêutica , Clorzoxazona/metabolismo , Liberação Controlada de Fármacos , Controle de Qualidade , Comprimidos/química , Acetaminofen/química , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/metabolismo , Automação , Clorzoxazona/química , Combinação de Medicamentos , Humanos , Relaxantes Musculares Centrais/química , Relaxantes Musculares Centrais/metabolismo , Solubilidade
9.
Xenobiotica ; 49(2): 187-199, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29448869

RESUMO

1. The objective of our study was to develop and validate a cocktail approach to allow the simultaneous characterization of various CYP450-mediated oxidations by human heart microsomes for nine probe drug substrates, namely, 7-ethoxyresorufin, bupropion, repaglinide, tolbutamide, bufuralol, chlorzoxazone, ebastine, midazolam and dodecanoic acid. 2. The first validation step was conducted using recombinant human CYP450 isoenzymes by comparing activity measured for each probe drug as a function of (1) buffer used, (2) selectivity towards specific isoenzymes and (3) drug interactions between probes. Activity was all measured by validated LC-MSMS methods. 3. Two cocktails were then constituted with seven of the nine drugs and subjected to kinetic validation. Finally, all probe drugs were incubated with human heart microsomes prepared from ventricular tissues obtained from 12 patients undergoing cardiac transplantation. 4. Validated cocktail #1 including bupropion, chlorzoxazone, ebastine and midazolam was used to characterize CYP2B6-, 2E1-, 2J2- and 3A5-mediated metabolism in human hearts. 5. Cocktail #2 which includes bufuralol, 7-ethoxyresorufin and repaglinide failed the validation step. Substrates in cocktail #2 as well as tolbutamide and dodecanoic acid had to be incubated separately because of their physico-chemical characteristics (solubility and ionization) or drug interactions. 6. Activity in HHM was the highest towards ebastine, chlorzoxazone and tolbutamide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/metabolismo , Bupropiona/metabolismo , Butirofenonas/metabolismo , Carbamatos/metabolismo , Clorzoxazona/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Etanolaminas/metabolismo , Humanos , Ácidos Láuricos/metabolismo , Midazolam/metabolismo , Miocárdio/metabolismo , Oxazinas/metabolismo , Piperidinas/metabolismo , Tolbutamida/metabolismo
10.
Arch Toxicol ; 92(10): 3077-3091, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151596

RESUMO

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5'-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 µM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.


Assuntos
Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Animais , Clorzoxazona/análogos & derivados , Clorzoxazona/farmacocinética , Clorzoxazona/urina , Cromatografia Líquida de Alta Pressão , Meios de Cultura/análise , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hidroxilação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Drug Dev Ind Pharm ; 43(5): 742-750, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27534668

RESUMO

CONTEXT: Muscle spasm is a painful involuntary contraction of muscles, which causes involuntary movement and distortion. Chlorzoxazone is a centrally acting muscle-relaxant with sedative properties, but given orally, it is hepatically metabolized leading to decreased bioavailability. OBJECTIVE: Orodispersible tablets (ODTs) of chlorzoxazone were formulated using two different approaches; by coprocessed excipients (CE) or by liquisolid (LS) technique. MATERIALS AND METHODS: Pharmaburst® 500, Starlac®, Pearlitol flash®, Prosolv® odt and F-melt® were used as coprocessed superdisintegrants, whereas in LS, Avicel® PH101, Microcelac® 100 and Cellactose® 80 were used as carriers, while Aerosil® 200 was the coating material. ODTs were evaluated in terms of weight and thickness variations, drug content, hardness, friability, wetting time, dissolution, disintegration time (DT) and palatability. RESULTS: In vitro DT of CE-ODTs ranged from 26.43 ± 1.693 s to >180 s, whereas it was between 25.42± 0.203 s to >180 s in LS-ODTs. Complete drug release within 15 min was attained by CE1 prepared with 92.5 mg Pharmaburst® 500. In vivo DT of CE1 and LS3 were 19.779 ± 0.810 and 18.105 ± 0.423 s, respectively, using six volunteers. Volunteers found that CE1 had more acceptable taste and was more palatable than LS3. CONCLUSION: It was concluded that chlorzoxazone ODTs could be successfully formulated using either CE or LS techniques and be used as novel dosage forms for pediatrics and geriatrics showing improved drug release. Moreover, CE technique was superior to LS technique in terms of palatability.


Assuntos
Clorzoxazona/química , Composição de Medicamentos/métodos , Comprimidos/química , Percepção Gustatória/efeitos dos fármacos , Paladar/efeitos dos fármacos , Administração Oral , Adulto , Disponibilidade Biológica , Química Farmacêutica/métodos , Clorzoxazona/metabolismo , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Feminino , Dureza , Humanos , Masculino , Solubilidade , Comprimidos/metabolismo , Molhabilidade
12.
Xenobiotica ; 47(12): 1035-1041, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670974

RESUMO

1. The purpose of the present study was to investigate the effect of piperine (PIP) on CYP2E1 enzyme activity and pharmacokinetics of chlorzoxazone (CHZ) in healthy volunteers. 2. An open-label, two period, sequential study was conducted in 12 healthy volunteers. A single dose of PIP 20 mg was administered daily for 10 days during treatment phase. A single dose of CHZ 250 mg was administered during control and after treatment phases under fasting conditions. The blood samples were collected at predetermined time intervals after CHZ dosing and analyzed by HPLC. 3. Treatment with PIP significantly enhanced maximum plasma concentration (Cmax) (3.14-4.96 µg/mL), area under the curve (AUC) (10.46-17.78 µg h/mL), half life (T1/2) (1.26-1.82 h) and significantly decreased elimination rate constant (Kel) (0.57-0.41 h - 1), apparent oral clearance (CL/F) (24.76-13.65 L/h) of CHZ when compared to control. In addition, treatment with PIP significantly decreased Cmax (0.22-0.15 µg/mL), AUC (0.94-0.68 µg h/mL), T1/2 (2.54-1.68 h) and significantly increased Kel (0.32-0.43 h - 1) of 6-hydroxychlorzoxazone (6-OHCHZ) as compared to control. Furthermore, treatment with PIP significantly decreased metabolite to parent (6-OHCHZ/CHZ) ratios of Cmax, AUC, T1/2 and significantly increased Kel ratio of 6-OHCHZ/CHZ, which indicate the decreased formation of CHZ to 6-OHCHZ. 4. The results suggest that altered pharmacokinetics of CHZ might be attributed to PIP mediated inhibition of CYP2E1 enzyme, which indicate significant pharmacokinetic interaction present between PIP and CHZ. The inhibition of CYP2E1 by PIP may represent a novel therapeutic benefit for minimizing ethanol induced CYP2E1 enzyme activity and results in reduced hepatotoxicity of ethanol.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Clorzoxazona/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Interações Medicamentosas , Relaxantes Musculares Centrais/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Adulto , Alcaloides/metabolismo , Área Sob a Curva , Benzodioxóis/metabolismo , Clorzoxazona/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Feminino , Meia-Vida , Humanos , Masculino , Relaxantes Musculares Centrais/metabolismo , Piperidinas/metabolismo , Alcamidas Poli-Insaturadas/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-27300008

RESUMO

Chlorzoxazone is a probe drug to assess cytochrome P450 (CYP) 2E1 activity (phenotyping). If the pharmacokinetics of the probe drug is linear, pharmacologically ineffective doses are sufficient for the purpose of phenotyping and adverse effects can thus be avoided. For this reason, we developed and validated an assay for the ultrasensitive quantification of chlorzoxazone and 6-hydroxychlorzoxazone in human plasma. Plasma (0.5mL) and liquid/liquid partitioning were used for sample preparation. Extraction recoveries ranged between 76 and 93% for both analytes. Extracts were separated within 3min on a Waters BEH C18 Shield 1.7µm UPLC column with a fast gradient consisting of aqueous formic acid and acetonitrile. Quantification was achieved using internal standards labeled with deuterium or (13)C and tandem mass spectrometry in the multiple reaction monitoring mode using negative electrospray ionization, which yielded lower limits of quantification of 2.5pgmL(-1), while maintaining a precision always below 15%. The calibrated concentration ranges were linear for both analytes (2.5-1000pgmL(-1)) with correlation coefficients of >0.99. Within-batch and batch-to-batch precision in the calibrated ranges for both analytes were <15% and <11% and plasma matrix effects always were below 50%. The assay was successfully applied to assess the pharmacokinetics of chlorzoxazone in two human volunteers after administration of single oral doses (2.5-5000µg). This ultrasensitive assay allowed the determination of chlorzoxazone pharmacokinetics for 8h after microdosing of 25µg chlorzoxazone.


Assuntos
Clorzoxazona/análogos & derivados , Clorzoxazona/sangue , Citocromo P-450 CYP2E1/análise , Administração Oral , Clorzoxazona/administração & dosagem , Clorzoxazona/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP2E1/metabolismo , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
14.
Biochemistry ; 55(28): 3888-98, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27347790

RESUMO

Many drugs are oxidized by membrane protein cytochrome P450 (CYP) enzymes during their metabolism process. CYPs are located mainly in endoplasmic reticulum (ER) membranes. Recent studies have suggested that CYP substrate drugs first bind the lipid bilayers of ER membranes and then the drugs reach the active site of CYP by way of an access channel. The entrance of the channel is located in the hydrophobic regions of the lipid bilayers. One of the features of the ER membrane is a cholesterol content that is lower than those of other biomembranes. In this study, the cholesterol concentration dependence of the interaction of a CYP substrate drug, chlorzoxazone (CZX), with model membranes composed of phosphatidylcholine (PC) and cholesterol was examined via differential scanning calorimetry (DSC), UV-visible spectroscopy, and X-ray diffraction. Experimental results indicated that CZX can bind to pure PC bilayers in the absence of cholesterol and that, by contrast, a high cholesterol concentration (30-50 mol %) tends to prevent CZX from binding to PC bilayers. Interestingly, the effect of cholesterol on the binding and insertion of CZX was biphasic. In the case of palmitoyloleoylphosphatidylcholine (POPC) bilayers containing 5-10 mol % cholesterol, the CZX's binding and penetration into the bilayer were found to be greater than those with pure POPC bilayers. The concentration of 5-10 mol % nearly corresponds to the cholesterol concentration of ER membranes. The low cholesterol contents (12-20 mol %) of ER membranes might be the most suitable for the CYP drug metabolism process in ER membranes.


Assuntos
Clorzoxazona/metabolismo , Colesterol/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/metabolismo , Relação Dose-Resposta a Droga
15.
Drug Metab Dispos ; 44(8): 1424-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27149898

RESUMO

The sedative clomethiazole (CMZ) has been used in Europe since the mid-1960s to treat insomnia and alcoholism. It has been previously demonstrated in clinical studies to reversibly inhibit human CYP2E1 in vitro and decrease CYP2E1-mediated elimination of chlorzoxazone. We have investigated the selectivity of CMZ inhibition of CYP2E1 in pooled human liver microsomes (HLMs). In a reversible inhibition assay of the major drug-metabolizing cytochrome P450 (P450) isoforms, CYP2A6 and CYP2E1 exhibited IC50 values of 24 µM and 42 µM, respectively with all other isoforms exhibiting values >300 µM. When CMZ was preincubated with NADPH and liver microsomal protein for 30 minutes before being combined with probe substrates, however, more potent inhibition was observed for CYP2E1 and CYP2B6 but not CYP2A6 or other P450 isoforms. The substantial increase in potency of CYP2E1 inhibition upon preincubation enables the use of CMZ to investigate the role of human CYP2E1 in xenobiotic metabolism and provides advantages over other chemical inhibitors of CYP2E1. The KI and kinact values obtained with HLM-catalyzed 6-hydroxylation of chlorzoxazone were 40 µM and 0.35 minute(-1), respectively, and similar to values obtained with recombinant CYP2E1 (41 µM, 0.32 minute(-1)). The KI and kinact values, along with other parameters, were used in a mechanistic static model to explain earlier observations of a profound decrease in the rate of chlorzoxazone elimination in volunteers despite the absence of detectable CMZ in blood.


Assuntos
Clormetiazol/farmacologia , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Hipnóticos e Sedativos/farmacologia , Fígado/efeitos dos fármacos , NADP/metabolismo , Biotransformação , Clormetiazol/toxicidade , Clorzoxazona/metabolismo , Inibidores do Citocromo P-450 CYP2E1/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Humanos , Hidroxilação , Hipnóticos e Sedativos/toxicidade , Cinética , Fígado/enzimologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Biológicos , Medição de Risco , Especificidade por Substrato
16.
J Steroid Biochem Mol Biol ; 163: 183-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27224941

RESUMO

16-dehydropregnenolone (DHP) is a promising novel antihyperlipidemic agent developed and patented by Central Drug Research Institute (CDRI), India. The purpose of the present study was to investigate whether DHP influences the activities and mRNA expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C11, CYP2D2, CYP2E1 and CYP3A1) in Sprague-Dawley (SD) rats. A cocktail suspension of CYP probe substrates which contained caffeine (CYP1A2), tolbutamide (CYP2C11), dextromethorphan (CYP2D2), chlorzoxazone (CYP2E1) and dapsone (CYP3A1) was administered orally on eighth- or fifteenth-day to rats pre-treated with DHP intragastrically at a dose of 36 and 72mg/kg for one week and two weeks. The concentrations of probe drugs in plasma were estimated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Alongside, the effect of DHP on CYPs activity and mRNA expression levels were assayed in isolated rat liver microsomes and by real-time reverse transcription-polymerase chain reaction (RT-PCR), respectively. DHP had significant inducing effects on CYP1A2, 2C11, 2D2 and 2E1 with no effect on CYP3A1 in dose- and time-dependent manner, as revealed from the pharmacokinetic profiles of the probe drugs in rats. In-vitro microsomal activities and mRNA expression results were in good agreement with the in-vivo pharmacokinetic results. Collectively, the results unveiled that DHP is an inducer of rat hepatic CYP enzymes. Hence, intense attention should be paid when DHP is co-administered with drugs metabolized by CYP1A2, 2C11, 2D2 and 2E1, which might result in drug-drug interactions and therapeutic failure.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP3A/genética , Família 2 do Citocromo P450/genética , Hipolipemiantes/farmacocinética , Pregnenolona/análogos & derivados , Esteroide 16-alfa-Hidroxilase/genética , Administração Oral , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Cafeína/metabolismo , Cafeína/farmacologia , Clorzoxazona/metabolismo , Clorzoxazona/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Família 2 do Citocromo P450/metabolismo , Dapsona/metabolismo , Dapsona/farmacologia , Dextrometorfano/metabolismo , Dextrometorfano/farmacologia , Regulação da Expressão Gênica , Hipolipemiantes/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Pregnenolona/administração & dosagem , Pregnenolona/farmacocinética , Ratos , Ratos Sprague-Dawley , Esteroide 16-alfa-Hidroxilase/metabolismo , Tolbutamida/metabolismo , Tolbutamida/farmacologia
17.
Pharmacogenomics J ; 16(6): 551-558, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26503817

RESUMO

Gene copy number variants (CNVs) of CYP2E1 have been described but not functionally characterized. Here we investigated effects of CNVs on hepatic and lymphoblastoid CYP2E1 expression. Using available single-nuleotide polymorphism microarray data and quantitative PCR, CYP2E1 gene duplication and deletion carriers were identified. CYP2E1 mRNA, protein and enzyme activity (chlorzoxazone-6-hydroxylation) phenotypes of CYP2E1 were not associated with gene copy number. Analysis of gene expression in lymphoblastoid cell lines in relation to CNV confirmed this finding in an extrahepatic tissue and for other ethnicities. Further analyses identified a linked haplotype cluster with possible influence on gene expression. In summary, our data suggest a homeostatic, gene dosage-insensitive regulation of CYP2E1 expression by unknown gene dosage compensation mechanisms. This is in striking contrast to well-known structural variations of CYP2A6 and CYP2D6 that have a strong impact on expression and activity. These findings are important in the context of pharmacogenetic prediction.


Assuntos
Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Variações do Número de Cópias de DNA , Dosagem de Genes , Hepatócitos/enzimologia , Variantes Farmacogenômicos , Linhagem Celular , Clorzoxazona/metabolismo , Bases de Dados Genéticas , Deleção de Genes , Duplicação Gênica , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Haplótipos , Humanos , Hidroxilação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , População Branca/genética
18.
Chemistry ; 21(42): 15039-47, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26311271

RESUMO

There is intense interest in late-stage catalytic C-H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α-hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α-functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late-stage C-H activation catalysts.


Assuntos
Clorzoxazona/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/química , Naproxeno/química , Testosterona/química , Catálise , Clorzoxazona/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Oxirredução , Engenharia de Proteínas , Testosterona/metabolismo
19.
Yao Xue Xue Bao ; 50(3): 319-25, 2015 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-26118111

RESUMO

This study aimed to explore the impact of depression caused by chronic unpredictable mild stress (CUMS) on in vivo activity of six kinds of CYP450 isoforms in rats. According to 'Katz' method, the model of CUMS was established. Tolbutamide, chlorzoxazone, theophylline, midazolam, omeprazole and dextromethorphan were chosen as probe substrates of CYP2C6, CYP2E1, CYP1A2, CYP3A2, CYP2D1 and CYP2D2 of rats. Plasma concentration of six kinds of CYP450 in control group and model group were determined by LC-MS/MS and computed pharmacokinetic parameters. Consequently, metabolism of theophylline and chlorzoxazone accelerated significantly (P < 0.01), but tolbutamide, dextromethorphan, omeprazole and midazolam had no significant difference. The present study proved that depression caused by CUMS had strong induction to CYP1A2 and medium induction to CYP2E1.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Estresse Fisiológico , Animais , Clorzoxazona/metabolismo , Cromatografia Líquida , Depressão , Dextrometorfano/metabolismo , Midazolam/metabolismo , Omeprazol/metabolismo , Ratos , Espectrometria de Massas em Tandem , Teofilina/metabolismo , Tolbutamida/metabolismo
20.
J Aquat Anim Health ; 26(4): 272-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25369285

RESUMO

Cytochrome P450s (CYPs) are the main catalytic enzymes for metabolism by a variety of endogenous and exogenous substrates in mammals, fish, insects, etc. We evaluated the application of a multidrug cocktail on changes in CYP1, CYP2, and CYP3 activity in Turbot Scophthalmus maximus. The probe drugs were a combination of caffeine (5 mg/kg body weight), dapsone (5 mg/kg), and chlorzoxazone (10 mg/kg). After a single intraperitoneal injection of the cocktail, the concentration of all three probe drugs in the plasma increased quickly to a peak and then decreased gradually over 24 h. Pharmacokinetic profiles of the three probe drugs were determined using a noncompartmental analysis, and the typical parameters were calculated. In the assay for CYP induction, pretreatment with rifampicin significantly reduced the typical pharmacokinetic metrics for caffeine and chlorzoxazone, but not dapsone, indicating that the activity of CYP1 and CYP2 in turbot were induced by rifampicin.


Assuntos
Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Dapsona/farmacocinética , Linguados/metabolismo , Animais , Antituberculosos/sangue , Antituberculosos/metabolismo , Antituberculosos/farmacocinética , Área Sob a Curva , Cafeína/sangue , Cafeína/metabolismo , Clorzoxazona/sangue , Clorzoxazona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dapsona/sangue , Dapsona/metabolismo , Indução Enzimática/efeitos dos fármacos , Antagonistas do Ácido Fólico/sangue , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacocinética , Relaxantes Musculares Centrais/sangue , Relaxantes Musculares Centrais/metabolismo , Relaxantes Musculares Centrais/farmacocinética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores de Fosfodiesterase/sangue , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacocinética , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...